Ученик (105)

Помогите пожалуйста, срочно!

Длины сторон треугольника АВС соответственно равны: ВС=15см, АВ=13см, АС=.4см. Через сторону АС проведена плоскость a, составляющая с плоскостью данного треугольника угол 30градусов. Найдите расстояние от вершины В до плоскости а...??
Регистрируйтесь, делитесь ссылками в соцсетях, получайте на WMR кошелек 20% с каждого денежного зачисления пользователей, пришедших на проект по Вашей ссылке. Подробнее
После регистрации Вы также сможете получать до 120 руб за каждую тысячу уникальных поисковых переходов на Ваш вопрос или ответ Подробнее
ОТВЕТЫ
Знаток (425)
Построим треугольник АВС. Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. Отсюда искомое расстояние ВК=ВД*sin30=12*1/2=6.